OCR Physics Unit 4

Topic Questions from Papers

Momentum

Answer all the questions.

1	(a)	State Newton's second and third laws of motion.
		In your answer, you should use appropriate technical terms spelled correctly.
13		(i) second law

(ii) third law

.....[1]

(b) A golfer uses a golf club to hit a stationary golf ball off the ground. Fig. 1.1 shows how the force *F* on the golf ball varies with time *t* when the club is in contact with the ball.

Fig. 1.1

(i) Estimate the area under the graph.

(ii)	Name the physical quantity represented by the area under the graph in (i).
	In your answer, you should use appropriate technical terms spelled correctly.
(iii)	Show that the speed of a golf ball, of mass $0.046\mathrm{kg}$, as it leaves the golf club is about $50\mathrm{ms^{-1}}$.
	speed = ms ⁻¹ [2]
(iv)	The ground is level. The ball leaves the ground at a velocity of $50\mathrm{ms^{-1}}$ at an angle of 42° to the horizontal. Determine the horizontal distance travelled by the ball before it hits the ground.
	State one assumption that you make in your calculations.
	distance = m
	assumption
	[5]
	[Total: 12]

© OCR 2010 Turn over

Answer all the questions.

1 (a) A particular collision between two objects is *inelastic*. Place a tick (✓) at the end of each statement that applies to such a collision. [2]

Statement	
The magnitude of the impulse on each object is the same.	
Kinetic energy and momentum for the objects are conserved.	
Total energy is conserved.	
After the collision, the objects have the same momentum.	

(b) Fig. 1.1 shows a tennis ball before and after striking a wall at right angles.

The ball of mass $0.060 \, \text{kg}$ hits the wall at a speed of $12 \, \text{m s}^{-1}$. The ball is in contact with the wall for $0.15 \, \text{s}$. It rebounds with a speed of $9.0 \, \text{m s}^{-1}$. Calculate

(i) the loss of kinetic energy during the collision

loss of kinetic energy = J [2]

(ii) the magnitude of the average force exerted on the ball by the wall

(iii) the magnitude of the average force exerted on the wall by the ball during this collision.

		average force on wall = N [1]
(c)	(i)	State three assumptions of the kinetic model of ideal gases.
		[3]
	(ii)	Use the kinetic theory of gases to explain how a gas exerts a pressure.
		[3]
		[Total: 13]

	A car of mass $970\mathrm{kg}$ is travelling at $27\mathrm{ms^{-1}}$ when the brakes are applied. The car is brought rest in a distance of $40\mathrm{m}$.		
(a)	(i)	Calculate the kinetic energy of the car when it is travelling at 27 m s ⁻¹ .	
	(ii)	kinetic energy =	
		average braking force =	
(b)		e car has four brake discs each of mass $1.2\mathrm{kg}$. The material from which the discs are de has a specific heat capacity of $520\mathrm{Jkg^{-1}K^{-1}}$.	
	(i)	Calculate the temperature rise of each disc after braking from a speed of 27 m s ⁻¹ . Assume all the kinetic energy of the car is converted into internal energy of the brake discs equally during braking.	
		temperature rise =°C [2]	

5

Answer **all** the questions.

1	(a)	(i)	State the principle of conservation of linear momentum.
			[2]
	((ii)	Explain what is meant by an inelastic collision.

(iii) Fig. 1.1 shows the head-on-collision of two blocks on a frictionless surface.

Fig. 1.1

Before the collision, the 2.4 kg block is moving to the right with a speed of $3.0 \,\mathrm{m\,s^{-1}}$ and the 1.2 kg block is moving to the left at a speed of $2.0 \,\mathrm{m\,s^{-1}}$. During the collision the blocks stick together. Immediately after the collision the blocks have a common speed v.

1 Calculate the speed *v*.

$v = \dots m s^{-1}$	[2]
----------------------	-----

2 Show that this collision is inelastic.

(b) Fig. 1.2 shows a helicopter viewed from above.

Fig. 1.2

The blades of the helicopter rotate in a circle of radius 5.0 m. When the helicopter is hovering, the blades propel air vertically downwards with a constant speed of $12\,\mathrm{m\,s^{-1}}$. Assume that the descending air occupies a uniform cylinder of radius 5.0 m.

The density of air is $1.3 \,\mathrm{kg}\,\mathrm{m}^{-3}$.

(i) Show that the mass of air propelled downwards in a time of 5.0 seconds is about 6000 kg.

[2]

© OCR 2011 Turn over

1 the momentum of this mass of descending air

momentum = $kg m s^{-1}$ [1]

2 the force provided by the rotating helicopter blades to propel this air downwards

force = N [2]

3 the mass of the hovering helicopter.

mass = kg [1]

[Total: 13]

Answer **all** the questions.

I	(a)	(i)	State Newton's first law of motion.
			[1]
		(ii)	Define the <i>newton</i> .
			[1]
	(b)	The	et plane on the deck of an aircraft carrier is accelerated before take-off using a catapult. In mass of the plane is 3.2×10^4 kg and it is accelerated from rest to a velocity of $55\mathrm{ms^{-1}}$ in the of 2.2 s. Calculate
		(i)	the mean acceleration of the plane
			mean acceleration =ms ⁻² [2]
		(ii)	the distance over which the acceleration takes place
			distance = m [2]
		(iii)	the mean force producing the acceleration.
			mean force =N [1]

Answer **all** the questions.

1	(a)	(i)	Define linear momentum.
			[1]
		(ii)	Linear momentum is a vector quantity. Explain why.
			[2]
	(b)	duri wall	crumple zone of a car is a hollow structure at the front of the car designed to collapseing a collision. In a laboratory road-test, a car of mass 850 kg was driven into a concrete. A video recording of the impact showed that the car, initially travelling at 7.5 m s ⁻¹ , was ught to rest in 0.28 s when it hit the wall.
		(i)	Calculate
			1 the deceleration of the car, assuming it to be uniform
			deceleration =ms ⁻² [1]
			2 the average force exerted by the wall on the car.
			force = N [2]

(ii)	The crumple zone of the car is designed to absorb 0.45 MJ of energy before any distortion
	of the passenger cabin occurs. For this design of crumple zone, calculate the maximum
	speed of the car at impact.

speed =	 ${\rm ms^{-1}}$	[2]

(c)	In a different test, another car of mass 850 kg is travelling at a speed of 7.5 m s ⁻¹ . It makes a							
	head-on collision with a stationary car of mass 1200 kg. Immediately after the impact, both							
	cars move off together with a common speed v. Calculate this speed.							

$$v = \dots m s^{-1}$$
 [2]

[Total: 10]

Answer all the questions.

1	(a)	Sta	te the effect a net force has on the motion of an object.
	(b)	(i)	Define the <i>impulse of a force</i> .
		(ii)	A force F is applied to an object. The graph in Fig. 1.1 shows the variation of this force with time t .
			Fig. 1.1

The initial velocity of the object is zero and its mass is known. Explain how this graph can be used to determine the final velocity of the object.

.....

(c) A tennis ball is hit by a racket as shown in Fig. 1.2.

The mass of a tennis ball is $0.058\,\mathrm{kg}$. During a serve the racket head and the ball are in contact for $4.2\,\mathrm{ms}$. Just before contact, the racket head is travelling towards the ball at $38\,\mathrm{m\,s^{-1}}$ and the ball is stationary. Fig.1.2a shows the situation just before contact. Immediately after contact, the racket head is travelling in the same direction at $32\,\mathrm{m\,s^{-1}}$ and the ball is travelling away from the racket at $52\,\mathrm{m\,s^{-1}}$. This is shown in Fig. 1.2b.

(i) Calculate the mean force provided by the racket on the ball.

mean force =N [2]

(ii) Estimate the mass of the racket.

mass = kg [2]

(iii) Suggest why the value of the mass calculated in (ii) will be different from the actual mass of the racket.

[11]

[Total: 9] Turn over

Answer **all** the questions.

1	(a)	State, in words, Newton's second law of motion.				
B		In your answer you should use appropriate technical terms spelled correctly.				
		[2]				
	(b)	Fig. 1.1 shows the masses and velocities of two objects $\bf A$ and $\bf B$ moving directly towards each other. $\bf A$ and $\bf B$ stick together on impact and move with a common velocity $\bf v$.				
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		Fig. 1.1				
		(i) Determine the velocity <i>v</i> .				
		magnitude of velocity = ms ⁻¹				
		direction =[3]				
		(ii) Determine the impulse of the force experienced by the object A and state its direction.				
		impulse =Ns				
		direction =[2]				

(iii)	Explain, using Newton's third law of motion, the relationship between the impulse experienced by A and the impulse experienced by B during the impact.
	[2]
	[Total: 9]

© OCR 2013 Turn over

Data

Values are given to three significant figures, except where more are useful.

c	$3.00 \times 10^8 \text{ m s}^{-1}$
ϵ_0	$8.85 \times 10^{-12}~\text{C}^2~\text{N}^{-1}~\text{m}^{-2}~(\text{F m}^{-1})$
e	$1.60 \times 10^{-19} \text{ C}$
h	$6.63 \times 10^{-34} \text{ J s}$
G	$6.67\times 10^{-11}\;\mathrm{N}\;\mathrm{m}^2\;\mathrm{kg}^{-2}$
$N_{\rm A}$	$6.02 \times 10^{23} \text{ mol}^{-1}$
R	$8.31~{ m J~mol^{-1}~K^{-1}}$
k	$1.38 \times 10^{-23} \ \mathrm{J \ K^{-1}}$
$m_{\rm e}$	$9.11 \times 10^{-31} \text{ kg}$
$m_{ m p}$	$1.673 \times 10^{-27} \text{ kg}$
$m_{\rm n}$	$1.675 \times 10^{-27} \text{ kg}$
	ϵ_0 e h G N_A R k m_e

 m_{α}

g

 $6.646 \times 10^{-27} \text{ kg}$

 9.81 m s^{-2}

alpha particle rest mass

acceleration of free fall

Conversion factors

$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

 $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$

$$1 \text{ day} = 8.64 \times 10^4 \text{ s}$$

1 year
$$\approx 3.16 \times 10^7 \text{ s}$$

1 light year
$$\approx 9.5 \times 10^{15}$$
 m

Mathematical equations

arc length =
$$r\theta$$

circumference of circle =
$$2\pi r$$

area of circle =
$$\pi r^2$$

curved surface area of cylinder =
$$2\pi rh$$

volume of cylinder =
$$\pi r^2 h$$

surface area of sphere
$$= 4\pi r^2$$

volume of sphere =
$$\frac{4}{3}\pi r^3$$

Pythagoras' theorem:
$$a^2 = b^2 + c^2$$

For small angle
$$\theta \Rightarrow \sin\theta \approx \tan\theta \approx \theta$$
 and $\cos\theta \approx 1$

$$\lg(AB) = \lg(A) + \lg(B)$$

$$\lg(\frac{A}{B}) = \lg(A) - \lg(B)$$

$$\ln(x^n) = n \ln(x)$$

$$\ln(\mathrm{e}^{kx}) = kx$$

Formulae and relationships

Unit 1 – Mechanics

$$F_x = F \cos \theta$$

$$F_{v} = F \sin \theta$$

$$a = \frac{\Delta v}{\Delta t}$$

$$v = u + at$$

$$s = \frac{1}{2} (u + v)t$$

$$s = ut + \frac{1}{2} at^2$$

$$v^2 = u^2 + 2as$$

$$F = ma$$

$$W = mg$$

moment = Fx

torque =
$$Fd$$

$$\rho = \frac{m}{V}$$

$$p = \frac{F}{A}$$

$$W = Fx \cos \theta$$

$$E_{\rm k} = \frac{1}{2} \, m v^2$$

$$E_{\rm p} = mgh$$

efficiency =
$$\frac{\text{useful energy output}}{\text{total energy input}} \times 100\%$$

$$F = kx$$

$$E = \frac{1}{2} Fx \qquad E = \frac{1}{2} kx^2$$

$$stress = \frac{F}{A}$$

$$\mathsf{strain} = \frac{x}{L}$$

Young modulus =
$$\frac{\text{stress}}{\text{strain}}$$

Unit 2 – Electrons, Waves and Photons

$$\Delta Q = I\Delta t$$

$$I = Anev$$

$$W = VQ$$

$$V = IR$$

$$R = \frac{\rho L}{A}$$

$$P = VI$$
 $P = I^2R$ $P = \frac{V^2}{R}$

$$W = VIt$$

e.m.f. =
$$V + Ir$$

$$V_{\rm out} = \frac{R_2}{R_1 + R_2} \times V_{\rm in}$$

$$v = f\lambda$$

$$\lambda = \frac{ax}{D}$$

$$d\sin\theta = n\lambda$$

$$E = hf$$
 $E = \frac{hc}{\lambda}$

$$hf = \phi + KE_{max}$$

$$\lambda = \frac{h}{mv}$$

$$R = R_1 + R_2 + \dots$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Unit 4 - Newtonian World

$$F = \frac{\Delta p}{\Delta t}$$

$$v = \frac{2\pi r}{T}$$

$$a = \frac{v^2}{r}$$

$$F = \frac{mv^2}{r}$$

$$F = -\frac{GMm}{r^2}$$

$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$$

$$f = \frac{1}{T}$$

$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$a = -(2\pi f)^2 x$$

$$x = A\cos(2\pi f t)$$

$$v_{\max} = (2\pi f) A$$

$$E = mc\Delta\theta$$

$$pV = NkT$$

$$pV = nRT$$

$$E = \frac{3}{2} kT$$

Unit 5 – Fields, Particles and Frontiers of Physics

$$E = \frac{F}{Q}$$

$$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{V}{d}$$

$$F = BIL \sin \theta$$

$$F = BQv$$

$$\phi = BA \cos \theta$$

induced e.m.f. = – rate of change of magnetic flux linkage

$$\frac{V_{\rm s}}{V_{\rm p}} = \frac{n_{\rm s}}{n_{\rm p}}$$

$$Q = VC$$

$$W = \frac{1}{2} QV \qquad W = \frac{1}{2} CV^2$$

time constant = CR

$$x = x_0 e^{-\frac{t}{CR}}$$

$$C = C_1 + C_2 + \dots$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$A = \lambda N$$

$$A = A_0 e^{-\lambda t}$$

$$N = N_0 e^{-\lambda t}$$

$$\lambda t_{1/2} = 0.693$$

$$\Delta E = \Delta mc^2$$

$$I = I_0 e^{-\mu x}$$