OCR Physics Unit 4

Topic Questions from Papers

Momentum

2

Answer all the questions.

1 (a) State Newton's second and third laws of motion.
In your answer, you should use appropriate technical terms spelled correctly.
(i) second law
\qquad
\qquad
\qquad
(ii) third law
\qquad
\qquad
\qquad
(b) A golfer uses a golf club to hit a stationary golf ball off the ground. Fig. 1.1 shows how the force F on the golf ball varies with time t when the club is in contact with the ball.

Fig. 1.1
(i) Estimate the area under the graph.
\qquad

3

(ii) Name the physical quantity represented by the area under the graph in (i).

In your answer, you should use appropriate technical terms spelled correctly.
\qquad
(iii) Show that the speed of a golf ball, of mass 0.046 kg , as it leaves the golf club is about $50 \mathrm{~m} \mathrm{~s}^{-1}$.
speed =
\qquad ms^{-1}
(iv) The ground is level. The ball leaves the ground at a velocity of $50 \mathrm{~ms}^{-1}$ at an angle of 42° to the horizontal. Determine the horizontal distance travelled by the ball before it hits the ground.

State one assumption that you make in your calculations.
distance $=$
\qquad

2
Answer all the questions.

1 (a) A particular collision between two objects is inelastic. Place a tick $(\boldsymbol{\checkmark})$ at the end of each statement that applies to such a collision.

Statement	
The magnitude of the impulse on each object is the same.	
Kinetic energy and momentum for the objects are conserved.	
Total energy is conserved.	
After the collision, the objects have the same momentum.	

(b) Fig. 1.1 shows a tennis ball before and after striking a wall at right angles.

Fig. 1.1
The ball of mass 0.060 kg hits the wall at a speed of $12 \mathrm{~ms}^{-1}$. The ball is in contact with the wall for 0.15 s . It rebounds with a speed of $9.0 \mathrm{~ms}^{-1}$. Calculate
(i) the loss of kinetic energy during the collision
loss of kinetic energy =
\qquad
(ii) the magnitude of the average force exerted on the ball by the wall
\qquad
(iii) the magnitude of the average force exerted on the wall by the ball during this collision.

> average force on wall =
(c) (i) State three assumptions of the kinetic model of ideal gases.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Use the kinetic theory of gases to explain how a gas exerts a pressure.
\qquad

5 A car of mass 970 kg is travelling at $27 \mathrm{~m} \mathrm{~s}^{-1}$ when the brakes are applied. The car is brought to rest in a distance of 40 m .
(a) (i) Calculate the kinetic energy of the car when it is travelling at $27 \mathrm{~ms}^{-1}$.
kinetic energy =
\qquad J [1]
(ii) Hence calculate the average braking force on the car stating any assumption that you make.
\qquad
average braking force $=$ N
assumption
\qquad
(b) The car has four brake discs each of mass 1.2 kg . The material from which the discs are made has a specific heat capacity of $520 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
(i) Calculate the temperature rise of each disc after braking from a speed of $27 \mathrm{~m} \mathrm{~s}^{-1}$. Assume all the kinetic energy of the car is converted into internal energy of the brake discs equally during braking.
\qquad

2
Answer all the questions.

1 (a) (i) State the principle of conservation of linear momentum.
\qquad
\qquad
\qquad
(ii) Explain what is meant by an inelastic collision.
\qquad
\qquad
(iii) Fig. 1.1 shows the head-on-collision of two blocks on a frictionless surface.

Fig. 1.1
Before the collision, the 2.4 kg block is moving to the right with a speed of $3.0 \mathrm{~ms}^{-1}$ and the 1.2 kg block is moving to the left at a speed of $2.0 \mathrm{~ms}^{-1}$. During the collision the blocks stick together. Immediately after the collision the blocks have a common speed v.

1 Calculate the speed v.

$$
v=
$$

\qquad $\mathrm{m} \mathrm{s}^{-1}$

2 Show that this collision is inelastic.

3

(b) Fig. 1.2 shows a helicopter viewed from above.

Fig. 1.2

The blades of the helicopter rotate in a circle of radius 5.0 m . When the helicopter is hovering, the blades propel air vertically downwards with a constant speed of $12 \mathrm{~ms}^{-1}$. Assume that the descending air occupies a uniform cylinder of radius 5.0 m .

The density of air is $1.3 \mathrm{~kg} \mathrm{~m}^{-3}$.
(i) Show that the mass of air propelled downwards in a time of 5.0 seconds is about 6000 kg .
(ii) Calculate

1 the momentum of this mass of descending air

> momentum =
\qquad kgms^{-1} [1]

2 the force provided by the rotating helicopter blades to propel this air downwards
force =
\qquad
3 the mass of the hovering helicopter.

2

Answer all the questions.

1 (a) (i) State Newton's first law of motion.
\qquad
\qquad
\qquad
(ii) Define the newton.
\qquad
\qquad
(b) A jet plane on the deck of an aircraft carrier is accelerated before take-off using a catapult. The mass of the plane is $3.2 \times 10^{4} \mathrm{~kg}$ and it is accelerated from rest to a velocity of $55 \mathrm{~ms}^{-1}$ in a time of 2.2 s . Calculate
(i) the mean acceleration of the plane
mean acceleration $=$ \qquad ms^{-2} [2]
(ii) the distance over which the acceleration takes place
distance $=$ \qquad
(iii) the mean force producing the acceleration.

2

Answer all the questions.

1 (a) (i) Define linear momentum.
\qquad
\qquad
(ii) Linear momentum is a vector quantity. Explain why.
\qquad
\qquad
\qquad
(b) The crumple zone of a car is a hollow structure at the front of the car designed to collapse during a collision. In a laboratory road-test, a car of mass 850 kg was driven into a concrete wall. A video recording of the impact showed that the car, initially travelling at $7.5 \mathrm{~ms}^{-1}$, was brought to rest in 0.28 s when it hit the wall.

(i) Calculate

1 the deceleration of the car, assuming it to be uniform

> deceleration =

2 the average force exerted by the wall on the car.
force =

3
(ii) The crumple zone of the car is designed to absorb 0.45 MJ of energy before any distortion of the passenger cabin occurs. For this design of crumple zone, calculate the maximum speed of the car at impact.
speed =
\qquad ms^{-1} [2]
(c) In a different test, another car of mass 850 kg is travelling at a speed of $7.5 \mathrm{~m} \mathrm{~s}^{-1}$. It makes a head-on collision with a stationary car of mass 1200 kg . Immediately after the impact, both cars move off together with a common speed v. Calculate this speed.

$$
v=
$$

2

Answer all the questions.

1 (a) State the effect a net force has on the motion of an object.
\qquad
\qquad
\qquad
(b) (i) Define the impulse of a force.
\qquad
\qquad
(ii) A force F is applied to an object. The graph in Fig. 1.1 shows the variation of this force with time t.

Fig. 1.1
The initial velocity of the object is zero and its mass is known. Explain how this graph can be used to determine the final velocity of the object.
\qquad
\qquad
\qquad
\qquad

3

(c) A tennis ball is hit by a racket as shown in Fig. 1.2.

Fig. 1.2a

Fig. 1.2b

Fig. 1.2
The mass of a tennis ball is 0.058 kg . During a serve the racket head and the ball are in contact for 4.2 ms . Just before contact, the racket head is travelling towards the ball at $38 \mathrm{~m} \mathrm{~s}^{-1}$ and the ball is stationary. Fig.1.2a shows the situation just before contact. Immediately after contact, the racket head is travelling in the same direction at $32 \mathrm{~m} \mathrm{~s}^{-1}$ and the ball is travelling away from the racket at $52 \mathrm{~ms}^{-1}$. This is shown in Fig. 1.2b.
(i) Calculate the mean force provided by the racket on the ball.
(ii) Estimate the mass of the racket.
mass $=$
(iii) Suggest why the value of the mass calculated in (ii) will be different from the actual mass of the racket.
\qquad
\qquad

2

Answer all the questions.

1 (a) State, in words, Newton's second law of motion.
In your answer you should use appropriate technical terms spelled correctly.
\qquad
\qquad
\qquad
(b) Fig. 1.1 shows the masses and velocities of two objects \mathbf{A} and \mathbf{B} moving directly towards each other. \mathbf{A} and \mathbf{B} stick together on impact and move with a common velocity v.

Fig. 1.1
(i) Determine the velocity v.

$$
\begin{aligned}
\text { magnitude of velocity } & =\text {... } \mathrm{ms}^{-1} \\
\text { direction } & =. ~
\end{aligned}
$$

(ii) Determine the impulse of the force experienced by the object \mathbf{A} and state its direction.
\qquad
(iii) Explain, using Newton's third law of motion, the relationship between the impulse experienced by \mathbf{A} and the impulse experienced by \mathbf{B} during the impact.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Total: 9]

Data

Values are given to three significant figures, except where more are useful.

speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\left(\mathrm{~F} \mathrm{~m}^{-1}\right)$
elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Planck constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Avogadro constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
molar gas constant	k	$8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Boltzmann constant	m_{e}	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}$
electron rest mass	m_{p}	$1.1 .673 \times 10^{-31} \mathrm{~kg}$
proton rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
neutron rest mass	m_{α}	$6.646 \times 10^{-27} \mathrm{~kg}$
alpha particle rest mass	g	9.81 m s
acceleration of free fall		

Conversion factors

unified atomic mass unit
electron-volt
$1 \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
1 day $=8.64 \times 10^{4} \mathrm{~s}$
1 year $\approx 3.16 \times 10^{7} \mathrm{~s}$
1 light year $\approx 9.5 \times 10^{15} \mathrm{~m}$

Mathematical equations

arc length $=r \theta$
circumference of circle $=2 \pi r$
area of circle $=\pi r^{2}$
curved surface area of cylinder $=2 \pi r h$
volume of cylinder $=\pi r^{2} h$
surface area of sphere $=4 \pi r^{2}$
volume of sphere $=\frac{4}{3} \pi r^{3}$

Pythagoras' theorem: $a^{2}=b^{2}+c^{2}$
For small angle $\theta \Rightarrow \sin \theta \approx \tan \theta \approx \theta$ and $\cos \theta \approx 1$
$\lg (A B)=\lg (A)+\lg (B)$
$\lg \left(\frac{A}{B}\right)=\lg (A)-\lg (B)$
$\ln \left(x^{n}\right)=n \ln (x)$
$\ln \left(\mathrm{e}^{k x}\right)=k x$

Formulae and relationships

Unit 1 - Mechanics
$F_{x}=F \cos \theta$
$F_{y}=F \sin \theta$
$a=\frac{\Delta v}{\Delta t}$
$v=u+a t$
$s=\frac{1}{2}(u+v) t$
$s=u t+\frac{1}{2} a t^{2}$
$v^{2}=u^{2}+2 a s$
$F=m a$
$W=m g$
moment $=F x$
torque $=F d$
$\rho=\frac{m}{V}$
$p=\frac{F}{A}$
$W=F x \cos \theta$
$E_{\mathrm{k}}=\frac{1}{2} m v^{2}$
$E_{\mathrm{p}}=m g h$
efficiency $=\frac{\text { useful energy output }}{\text { total energy input }} \times 100 \%$
$F=k x$
$E=\frac{1}{2} F x \quad E=\frac{1}{2} k x^{2}$
stress $=\frac{F}{A}$
strain $=\frac{X}{L}$
Young modulus $=\frac{\text { stress }}{\text { strain }}$

Unit 2 - Electrons, Waves and Photons
$\Delta Q=I \Delta t$
$I=$ Anev
$W=V Q$
$V=I R$
$R=\frac{\rho L}{A}$
$P=V I$
$P=I^{2} R$
$P=\frac{V^{2}}{R}$
$W=V I t$
e.m.f. $=V+I r$
$V_{\text {out }}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{\text {in }}$
$v=f \lambda$
$\lambda=\frac{a x}{D}$
$d \sin \theta=n \lambda$
$E=h f \quad E=\frac{h c}{\lambda}$
$h f=\phi+\mathrm{KE}_{\text {max }}$
$\lambda=\frac{h}{m v}$
$R=R_{1}+R_{2}+\ldots$
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$

Unit 4 - Newtonian World

$F=\frac{\Delta p}{\Delta t}$
$E=\frac{F}{Q}$
$v=\frac{2 \pi r}{T}$
$a=\frac{v^{2}}{r}$
$F=\frac{m v^{2}}{r}$
$F=-\frac{G M m}{r^{2}}$
$g=\frac{F}{m}$
$g=-\frac{G M}{r^{2}}$
$T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3}$
$f=\frac{1}{T}$
$\omega=\frac{2 \pi}{T}=2 \pi f$
$a=-(2 \pi f)^{2} x$
$x=A \cos (2 \pi f t)$
$v_{\max }=(2 \pi f) A$
$E=m c \Delta \theta$
$p V=N k T$
$p V=n R T$
$E=\frac{3}{2} k T$ Physics
$E=\frac{V}{d}$
$F=B Q v$
$\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}}$
$Q=V C$
$x=x_{0} \mathrm{e}^{-\frac{t}{C R}}$

Unit 5 - Fields, Particles and Frontiers of
$F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}$
$E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
$F=B I L \sin \theta$
$\phi=B A \cos \theta$
induced e.m.f. $=-$ rate of change of magnetic flux linkage
$W=\frac{1}{2} Q V \quad W=\frac{1}{2} C V^{2}$
time constant $=C R$
$C=C_{1}+C_{2}+\ldots$
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$
$A=\lambda N$
$A=A_{0} \mathrm{e}^{-\lambda t}$
$N=N_{0} \mathrm{e}^{-\lambda t}$
$\lambda t_{1 / 2}=0.693$
$\Delta E=\Delta m c^{2}$
$I=I_{0} \mathrm{e}^{-\mu x}$

